
Cryptanalysis of TWIS Block Cipher

Onur Koçak and Neşe Öztop

Institute of Applied Mathematics, Middle East Technical University, Turkey
{onur.kocak,noztop}@metu.edu.tr

Abstract. TWIS is a 128-bit lightweight block cipher that is proposed by Ojha et al. In this work,
we analyze the security of the cipher against differential, impossible differential and linear attacks.
For the differential case, we mount a full-round attack on TWIS and recover 12 bits of the 32-bit final
subkey with 221 complexity. For the other cases, we present distinguishers which can be extended
to key recovery attacks. Also, we showed that the security of the cipher is only 62 bits instead of
claimed 128 bits. Moreover, we introduce some observations that compromise the security of the
cipher.
Keywords: TWIS, Lightweight Block Cipher, Differential Cryptanalysis, Impossible Differential
Distinguisher, Linear Distinguisher.

1 Introduction

The pace of ubiquitous devices in daily life has been increased drastically in the last few years. As
the usage increases, the privacy of the stored data and the security of the communication between
these devices become questionable. The requirement for protection of data and communication
makes the use of cryptographic algorithms inevitable. However, the standardized algorithms like
AES[1] and SHA[2] or commonly used algorithms like Triple DES[3] and MD5[4] are not suitable
for constrained devices. Therefore, recently, new lightweight algorithms which need low power
consumption and hardware area, like Present[5], KATAN/KTANTAN[6], DESL[7], Grain[8] and
TWIS[9] are designed for such constrained environments.

TWIS is a 128-bit block cipher designed to be used in ubiquitous devices. The cipher, which
is inspired from CLEFIA[10], is a 2-branch generalized Feistel Network of 10 rounds. There is
no key recovery attack on this cipher up to the authors knowledge. The only analysis is done by
Su et al.[11] in which n-round iterative differential distinguishers are presented. However, as the
probability of the iterative distinguishers are 1, they cannot be extended to a differential attack
to get information about the key.

In this paper, we analyze the security of TWIS block cipher against differential, impossible
differential and linear cryptanalysis. We mount a differential attack on full-round TWIS and
recover 12 bits of the 32-bit final subkey with a complexity of 221. This is the first experimental
result on TWIS. Also, we present a 9.5-round impossible distinguisher which can be extended
to a key recovery attack, and a straightforward linear distinguisher. Furthermore, by making
observations on the key schedule, we show that the cipher offers at most 62-bit security instead of
claimed 128-bit. Besides, we mention the potential weaknesses due to the use of subkeys during
the encryption and the choice of whitening subkeys. The paper is organized as follows. Section 2
gives a description of the round function and the key schedule of TWIS block cipher. In Section
3, a 10-round differential attack is presented. Linear and impossible differential distinguishers
are proposed in Section 4 and Section 5, respectively. Some observations on the algorithm are
given in Section 6. Finally Section 7 concludes the paper.

2 Description of TWIS Block Cipher

TWIS is a lightweight block cipher with 128-bit plaintext and key sizes each. Designers of
the cipher are inspired from CLEFIA to design a lighter algorithm without compromising the



security. The algorithm is a 2-branch generalized Feistel Network, running on 10 rounds. At each
round, two 32-bit subkeys are used. The key is mixed with the plaintext inside the G-function.
Details of the G-function is given in Section 2.1.

Round subkeys are generated via key scheduling algorithm. Key scheduling part can be
viewed as an NFSR which updates the content using an S-box and a round constant. Details
of the key scheduling algorithm is given in Section 2.2.

Notation The following notations are used throughout this paper:

– a ⊕ b: bitwise XOR of a and b
– a ∧ b: bitwise AND of a and b
– <<< i: left rotation by i bits
– >>> i: right rotation by i bits
– ∆I: XOR difference between two inputs

Let P = (P0, P1, P2, P3) and C = (C0, C1, C2, C3) be the 128-bit plaintext and ciphertext
respectively where Pi and Ci, 0 ≤ i ≤ 3, are 32-bit words. Also, let RKj be the 32-bit jth subkey
for j = 0, .., 10. Then, the encryption process can be summarized as in Algorithm 1. Likewise,
Figure 2 shows the encryption schematically.

Algorithm 1 The Encryption Process of TWIS
(T0, T1, T2, T3) = (P0 ⊕RK0, P1, P2, P3 ⊕RK1)
for i = 1 to 10 do

(X0, X1) = G(RKi−1, T0, T1)
T2 = X0 ⊕ T2

T3 = X1 ⊕ T3

T1 = T1 <<< 8
T3 = T3 >>> 1
(T0, T1, T2, T3) = (T2, T3, T0, T1)
(X0, X1) = G(RKi, T0, T3)
T1 = X0 ⊕ T1

T2 = X1 ⊕ T2

T2 = T2 >>> 1
T3 = T3 <<< 8

end for
(C0, C1, C2, C3) = (T0 ⊕RK2, T1, T2, T3 ⊕RK3)

2.1 G-Function

G-function is the round function of TWIS block cipher. It provides confusion and diffusion
between the branches. G-function takes three inputs of 32 bits; 32-bit subkey and 32-bit words
from each two of the four branches, and outputs two 32-bit words. The G-function can be written
as in Algorithm 2.

Algorithm 2 G-Function
G(RK,X0, X1) = (Y0, Y1)

Y1 = X1 ⊕ F (RK,X0)
Y0 = X1



Fig. 1. Encryption Process

F -Function F -function is the core of the G-function. Key mixing and confusion occurs within
this function. F -function takes two 32-bit inputs, one of which is the subkey. It XORs the first
parameter, the content of the corresponding branch, with the subkey and divides the resulting
32-bit word into four 8-bit words. Then, F -function applies a 6 × 8 S-box to each of the 8-bit
words and swaps them as in the actual rounds. Finally, it concatenates four 8-bit words to form
a 32-bit word. The F -function is formulated in Algorithm 3.

Algorithm 3 F -Function
F (RK,Q)

Q = Q⊕RK
Q = (Q0, Q1, Q2, Q3)
Q0 = S(Q0 ∧ 0x3f)
Q1 = S(Q1 ∧ 0x3f)
Q2 = S(Q2 ∧ 0x3f)
Q3 = S(Q3 ∧ 0x3f)
Q = (Q2, Q3, Q0, Q1)

S-Box The S-box used in the F -function is a 6 × 8 S-box which is given in Table 1. The first
two bits of the 6-bit input determine the row, the remaining 4 bits determine the column of the
table and the corresponding value is given as the output. For example S(0x24) = 0xf7.

Although the output space is larger than the input space, there are some inputs that are
mapped to the same output, like S(30) = S(15). This enables a non-zero difference to be mapped
to zero difference which is a weakness that can be exploited to mount differential type of attacks.

2.2 Key Schedule

The key schedule part of TWIS generates subkeys which are used in the F -functions. It produces
11 subkeys for the 10-round cipher. RK0 and RK1 are used as the initial whitening keys, while
RK2 and RK3 are used as the final whitening keys. Notice that, RK1, RK2 and RK3 are used
three times, RK10 is used once and the rest of the subkeys are used twice. The key scheduling



Table 1. S-Box of TWIS

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 90 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c

1 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af

2 bf bf 19 65 f7 7a 32 20 16 ce e4 83 9d 5b 4c d8

3 ee 99 2e f8 d4 9b 0f 13 29 89 67 cd 71 dd b6 f4

algorithm uses the same S-box as in the F -function. In addition, it uses a diffusion matrix M
to generate the subkeys from the master key which is given as

M =


0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

 .

The key scheduling algorithm can be formulated as in Algorithm 4 and is shown in Figure
2.

Algorithm 4 The Key Scheduling Algorithm
K = (K1,K2, . . . ,K16)
for i = 1 to 11 do
K = K <<< 3
Ki = S(Ki ∧ 0x3f)
K15 = S(K15 ∧ 0x3f)
K16 = K16 ⊕ i
RKt

i−1 = M · (K13K14K15K16)t

end for

Fig. 2. Key Scheduling Algorithm



3 Differential Attack on TWIS

Differential cryptanalysis was introduced by Biham and Shamir [12] in 1990 and is one of the most
effective techniques in block cipher cryptanalysis. It analyzes how the difference between two
input values propagates after encryption of these inputs for some number of rounds. For TWIS
block cipher, no differential analysis is given and it is left as a future work[9]. In[11], security of
TWIS against differential cryptanalysis is evaluated by Su et al. and differential distinguishers
for 10-round TWIS cipher are presented. In this section, we propose a key recovery attack on
10-round TWIS excluding the final key whitening. Our attack is based on a 9.5-round differential
distinguisher which is explained in the following section.

3.1 9.5-round Differential Characteristic

In order to construct a differential characteristic with high probability, we choose the differences
utilizing the following properties:

Property 1. The first 2 bits of 8-bit input which enters the S-box have no effect on the output
because of the bitwise AND operation with 0x3f.

Property 2. The input differences 0x01 and 0x25 cause zero output differences with prob-
ability 2−5.

Property 1 enables us to have 1-round differentials with probability 1. Also, using Property
2, the number of active S-boxes can be decreased.

The inputs of the F -function are the 1st and the 3rd 32-bit words of the data which are
interchanging in the swap operation. There is no rotation operation applied on the 3rd word
and the rotation on the 1st word is a 1-bit right rotation. Therefore, if we have 80000000x as
input difference in the 3rd word, this difference will produce zero differences after the F -function
with probability 1 during the next four rounds by the first property. We extend such a 4-round
characteristic by adding 3 rounds to the beginning and 2.5 rounds to the end of it. The best
characteristic that we found for TWIS has probability 2−18 and is given in Table 2. For simplicity,
we use the alternative round function depicted in Figure 3. In Table 2, the values ∆Ii refer to the
input differences of the corresponding round. The output differences are not given additionally
as they are the input differences of the next round.

Table 2. 9.5-round Differential Characteristic

Rounds ∆I0 ∆I1 ∆I2 ∆I3 # Active S-boxes
I/O Diff.
for S-box

Probability

1 02000000x 00000000x 00000000x 0000A600x 1 0x02→ 0xA6 2−4

2 00000000x 00000000x 01000000x 00000000x 1 0x01→ 0x00 2−5

3 01000000x 00000000x 00000000x 00000000x 1 0x01→ 0x00 1*

4 00000000x 00000000x 00800000x 00000000x 0 - 1

5 00800000x 00000000x 00000000x 00000000x 0 - 1

6 00000000x 00000000x 00400000x 00000000x 0 - 1

7 00400000x 00000000x 00000000x 00000000x 0 - 1

8 00000000x 00000000x 00200000x 00000000x 1 0x20→ 0x83 2−4

9 00200000x 00000000x 80000041x 00000000x 2
0x20→ 0x83
0x01→ 0x00

2−5*

9.5 80000041x 80000041x 00100000x 00000000x 1 0x01→ 0x00 1*

80000041x 00004180x 80100041x C0000020x - -



Notice that, in Table 2, the probability values of some rounds are marked with an asterisk(*)
and these values are also relatively higher when considering the number of active S-boxes. The
reason for high probability is that the cipher uses the same subkey for two consecutive G-
functions and this makes them identical. To clarify, let x and x̄ be two input values to G and
y, ȳ be the two corresponding output values. Then, if x and x̄ are input to the next G-function
which uses the same subkey, the outputs will again be y and ȳ. Hence, if an input pair with
input difference ∆x produces outputs with difference ∆y with some probability p in G, then
the same output difference ∆y is produced with probability 1 when the input difference is ∆x
for the next G-function that uses the same subkey. Therefore, the probability of a differential
characteristic that involves such G-functions is p instead of p2. If each G-function were using
different subkeys, the probability of the characteristic would be 2−32.

Fig. 3. Alternative Round Function

3.2 10-round Differential Attack

We perform a key-recovery attack on 10-round TWIS, excluding the final key whitening, by
using the 9.5-round differential characteristic given in Section 3.1 and recover 12 bits of the
last round subkey RK10. Adding a half round to the end of the given 9.5-round differential
characteristic and simply tracing the differences, we obtain the difference between ciphertext
pairs as (80100041x,C00041A0x, ????????x, 00418000x).

The attack proceeds as follows:

1. Take N = c.218 plaintext pairs P i = (P i
0, P

i
1, P

i
2, P

i
3), P i∗ = (P i

0
∗
, P i

1
∗
, P i

2
∗
, P i

3
∗
) such that

P i ⊕ P i∗ = (02000000x, 00000000x, 00000000x, 0000A600x) and obtain their corresponding
ciphertexts Ci = (Ci

0, C
i
1, C

i
2, C

i
3), C

i∗ = (Ci
0
∗
, Ci

1
∗
, Ci

2
∗
, Ci

3
∗
) by encrypting these plaintexts

for 10 rounds of TWIS.
2. Check the first 64-bit and the last 32-bit ciphertext difference whether Ci

0⊕Ci
0
∗

= 80100041x,
Ci
1 ⊕ Ci

1
∗

= C00041A0x and Ci
3 ⊕ Ci

3
∗

= 00418000x and keep the text pairs satisfying these
equations.

3. As the input differences of the S-boxes in the 10th round are 0x3f ·80 = 0x0, 0x3f ·10 = 0x10,
0x3f · 00 = 0x0 and 0x3f · 41 = 0x01, one can attack the 2nd and 4th 8-bit words of RK10.



Fig. 4. Last Round of the Attack

However, since two bits of each word vanish after bitwise AND operation, we can retrieve
12 bits of the subkey. Therefore, keep a counter for each possible value of the 12 bits of the
subkey RK10 corresponding to the second and the fourth bytes.

4. Inputs of the last F -function are (Ci
0, RK10) and (Ci

0
∗
, RK10). XOR of output difference of

this F -function and ((00418000x) >>> 8) should be equal to the XOR of 80000041x and
(∆Ci

2 <<< 1). So, for each pair of plaintexts and their corresponding ciphertexts (Ci, Ci∗),
increment the counter for the corresponding value of the subkey RK10 when the following
equations holds:

F (Ci
0, RK10)⊕ F (Ci

0
∗
, RK10)⊕ 00004180x = 80000041x ⊕ (∆Ci

2 <<< 1).

5. Adopt the key with the highest counter as the right key.

The signal to noise ratio S/N of the attack is calculated as 25. This value can be calculated
from

S/N =
2k · p
α · β

where k is the key bits we try to derive, p is the probability, α is the average count of the subkeys
per counted plaintext pair and β is the ratio of the counted pairs to all pairs. As we search for
the 12 bits of the final subkey, k = 12, and the probability is p = 2−18. The expected number of
suggested subkeys is α = 2. The checking condition for the output of the F -function is 12 bits.
So, S/N ratio can be computed as

S/N =
2−18 · 212

2 · 2−12
= 25.

According to [12], about c = 4 right pairs is enough to uniquely determine the 12 bits of
RK10. Therefore, the number of required plaintext pairs is N = 4 · 218 = 220 and this makes the
data complexity of the attack 221 chosen plaintexts. Step (1) requires 221 10-round encryptions.
After Step (2), there remains 220 · 2−18 = 22 right pairs. Step (3) requires 212 counters. For Step
(4), 22 · 2 · 12 1-round computations are required which can be ignored. Hence, time complexity
of this attack is 221 10-round encryptions and the memory complexity is 212. Moreover, as the



two attacked 6-bit words are independent from each other, one can keep two counters of 6 bits
instead of a single counter of12 bits, which reduces the memory complexity to 27.

The implementation of the attack verifies the results given in this section. Using the reference
implementation of TWIS and taking c = 4, it takes only 15 seconds on a laptop1 to get the 12
bits of the final subkey. By optimizing the reference code, the attack time can be decreased.

4 Impossible Differential Distinguisher for TWIS

Impossible differential analysis[13, 14] is a variant of differential analysis. The fundamental dif-
ference between two analysis methods is that in differential cryptanalysis the attacker tries to
exploit possible input-output difference pairs to get information about the correct key, while in
impossible differential cryptanalysis the attacker tries to find events that never occur and use
differentials with probability zero, called impossible differentials. In this section, we analyze the
security of TWIS with respect to impossible differential cryptanalysis and present a distinguisher
of 9.5 rounds.

While building the impossible differential characteristic, we were inspired from the differential
characteristic given in Table 2. We combine two differential characteristics with probability
one and obtain a contradiction by using the miss-in-the-middle approach[15]. The impossible
differential characteristic is depicted in Figure 5, in which “0” denotes the 32-bit word consisting
of all zeros.

In the left part of Figure 5, the input difference (0,0,∆y,0), ∆y=00800000x, is proceeded for
4.5 rounds in the forward direction and the difference (∆t,0,0,0), ∆t=00200000x, is obtained. On
the other part, starting from the last round of the characteristic, the output difference (∆t,0,0,0)
is traced backwards for 5 rounds and (0,0,∆x,0) difference where ∆x=01000000x, is acquired.
However, we cannot have (∆t,0,0,0) = (0,0,∆x,0) since both ∆t and ∆x are non-zero differences.
Therefore, (0,0,∆y,0) 9 (∆t,0,0,0) after 9.5 rounds.

This characteristic can be extended to an impossible differential attack by adding half round
to the beginning of the characteristic. By guessing the initial subkeys, wrong values can be
eliminated and one will be left with the actual value of the subkeys.

5 Linear Distinguisher for TWIS

Linear cryptanalysis[16], is a generic method which exploits the linear relations among plaintext,
ciphertext and key bits. Using the linear approximations of non-linear round function elements,
one can gather information on the key bits. One can also provide distinguishers for an algorithm
by using its linear properties. In this section, we present linear distinguishers for full TWIS with
probability 1. These distinguishers, similar to the impossible differential distinguisher, can be
extended to a key recovery attack by adding some number of rounds to the beginning or the
end of the characteristic.

In order to obtain the linear characteristics, we use Property 1 in Section 3.1. Since the bits
in the first two positions of the S-box input are omitted, if we choose masks that trace those bits,
after the S-box operation the mask vanishes. There are 4 S-boxes in the F -function, so there are
8 bit positions that are omitted in an F -function. Therefore, one can find 28 trivial masks that
vanishes after the first half of the first round. These masks can be used to distinguish the cipher
from a random mapping. Moreover, as the masks vanish in the first round, the distinguishers
apply arbitrary number of rounds of TWIS. Also, by choosing proper bits, one can increase
the number of masks which vanish in the following rounds. In Figure 5, one of the discussed

1 2.2 Ghz Intel Core2Duo Processor, 2 GB Ram, Ubuntu 10.10 64 bit Operating System.



Fig. 5. Impossible Differential Characteristic where ∆x=01000000x, ∆y=00800000x, ∆t=00200000x, and
∆z=00400000x.



distinguishers is illustrated where [0] denotes the linear mask on the first bit of 32-bit word and
[−] denotes no masking.

Fig. 6. Linear Distinguisher for TWIS

6 Key Related Observations

This section is devoted to the observations on TWIS block cipher. These observations, which
are mainly on key scheduling algorithm, include very basic design flaws like actual key size and
trivial related key distinguishers that compromise the security of the algorithm.

The most important flaw with the key schedule is that it does not use all bits of the master
key. Instead, it uses only 62 bits of the 128-bit key. The first subkey is generated from the first 3
and the last 29 bits of the master key. Each remaining subkeys will be generated by left rotation
of the modified key by 3. So, in order to generate 10 more subkeys, algorithm uses the first 33
bits of the master key. Therefore, key scheduling algorithm uses the first 33 and the last 29 bits
of the key to derive the 11 subkeys. Hence the security of the cipher is 62-bit instead of claimed
128-bit.

Another flaw arises from the S-box used in the key schedule. The S-box is used in the same
manner with data processing part, so, one can find many related key distinguishers for TWIS. In
order to form a related key distinguisher, it is enough to use a difference between two keys, where
the difference coincides to the bit positions that are not processed by the S-box. For example,
take K and K such that K0 = K0 ⊕ 0x10. After the initial 3-bit rotation, the difference 0x10
becomes 0x80. Then, applying S-box to both K and K, one gets S(K ∧ 0x3f) = S(K ∧ 0x3f)
and the difference between the keys will be cancelled after S-box operation. Since there is no
other difference between the keys, all the subkeys will be exactly the same. This means, if one
encrypts P with K and K, he gets the same ciphertexts with probability one. The number of
related key distinguishers can be increased by choosing the key differences that coincide the first
two bit positions of 8-bit S-box input.

Also, in the data processing part, the data is XORed with the subkey and then S-box is
applied to the XORed data. As S-box ignores the first two bits of the 8-bit input, 8 bits of the
key is thrown away after this operation. So, the actual subkeys are 24 bits instead of 32 bits.

The key whitening, which is introduced to increase the security, is used in an inappropriate
way. Notice that RK0 is XORed to P0 as the key whitening which also again XORed to P0 in
the first round inside the G-function. In this way RK0 will be cancelled in G and it has no effect
on the first G-function. So, if one knows the plaintext or specifically P0, then he also knows the
output of the G-function without knowing the key. Therefore, the cipher can be considered as
9,5 rounds.



Furthermore, the choice of final whitening subkeys results in a weakness. If one can determine
the whole 32-bits of RK2 and RK10 by attacking the final round, he can also determine the
subkeys in between trivially. As the S-box is not invertible (one has to guess the ignored two
bits) and there are 3 unknown bits coming from left rotation, it is not possible to go backwards
from RK10. Also, one cannot go forwards from RK2 because of the rotation. However, knowing
both, one can determine the missing bits and recover the subkeys RK3, RK4, . . . , RK9 by going
backwards from RK10, forwards from RK2, and checking the known bits. One can recover RK1,
by going backwards from RK2, with 25 computations since there are 3 unknown bits from the
rotation and 2 unknown bits from the inverse of the S-box. Similarly, RK0 can be recovered
using RK1 with 25 complexity.

Besides, the diffusion of the key bits into the plaintext is not sufficient. This is a result of
using an 8-bit word-wise permutation instead of a bitwise permutation and 8-bit S-box. This
enables the attacker to mount an exhaustive search for a 32-bit subkey by dividing it into four
8-bit words without the knowledge of the remaining 24 bits. The complexity of such a search
will be 4 · 28 = 210 instead of 232. However, in TWIS case, since the S-box ignores two input
bits, one can recover the active subkey with 4 · 26 = 28 complexity.

7 Conclusion and Future Work

In this paper, we analyze the security of TWIS block cipher against differential, impossible
differential and linear attacks. Our results show that 10-round TWIS, when we exclude the final
key whitening, is not resistant against differential attack. We recover half of the active key bits
with 221 chosen plaintexts. Also, we present distinguishers using the impossible differential and
linear analysis techniques. These distinguishers can be extended to key recovery attacks. Finally,
we propose some important observations on the algorithm.

As future a work, we aim to apply the mentioned attacks on full TWIS and mount related-key
attacks by using the weaknesses in the key schedule.

References

1. National Institute for Science and Technology (NIST). Advanced Encryption Standard (FIPS PUB 197).
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

2. National Institute of Standards and Technology. Federal Information Processing Standard 180-2 Secure Hash
Standard. http://csrc.nist.gov/publications/fips/, 2002.

3. William C. Barker, National Institute of Standards, and Technology (U.S.). Recommendation for the Triple
Data Encryption Algorithm (TDEA) block cipher [electronic resource] / William C. Barker. U.S. Dept. of
Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg, MD
:, 2004.

4. Ronald L. Rivest. The MD5 Message-Digest Algorithm. http://tools.ietf.org/rfc/rfc1321.txt, 1992.
5. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Rob-

shaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES, pages
450–466, 2007.

6. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A Family of
Small and Efficient Hardware-Oriented Block Ciphers. In CHES, pages 272–288, 2009.

7. Axel Poschmann, Gregor Leander, Kai Schramm, and Christof Paar. New Light-Weight Crypto Algorithms
for RFID. In ISCAS, pages 1843–1846, 2007.

8. Martin Hell, Thomas Johansson, and Willi Meier. Grain: A Stream Cipher for Constrained Environments.
IJWMC, 2(1):86–93, 2007.

9. Shrikant Ojha, Naveen Kumar, Kritika Jain, and Sangeeta Lal. TWIS - A Lightweight Block Cipher. In
ICISS, pages 280–291, 2009.

10. Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-Bit Blockcipher
CLEFIA (Extended Abstract). In FSE, pages 181–195, 2007.

11. Bozhan Su, Wenling Wu, Lei Zhang, and Yanjun Li. Some Observations on TWIS Block Cipher. Cryptology
ePrint Archive, Report 2010/066, 2010. http://eprint.iacr.org/.



12. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In CRYPTO, pages 2–21,
1990.

13. Lars Knudsen. DEAL - A 128-bit Block Cipher. In NIST AES Proposal, 1998.
14. Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible

Differentials. In EUROCRYPT, pages 12–23, 1999.
15. Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the Middle Attacks on IDEA and Khufu. In FSE, pages

124–138, 1999.
16. Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In EUROCRYPT, pages 386–397, 1993.


